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Experimental studies of laminar axisymmetric starting plumes are performed to
investigate the dependence of the flow on the Prandtl number, focusing on large
Prandtl numbers. Thermal plumes are generated by a small electric heater in a glass
tank filled with viscous oils. Prandtl numbers in the range of 7–104 were investigated.
Experimental conditions are such that viscosity variations due to temperature differ-
ences are negligible. Plumes ascend in two different regimes as a function of distance
to source. At short distances, the plumes accelerate owing to the development of the
viscous boundary layer. At distances larger than about five times the heater size,
the ascent velocity is constant and increases as a function of the Prandtl number,
as predicted by theory for steady plumes. This velocity is, within experimental error,
proportional to the steady plume centreline velocity.

1. Introduction
Thermal convection phenomena play a key role in many natural systems such as

the atmosphere, the ocean, magma chambers and the Earth’s mantle. At one end of
the spectrum, geological flows involve fluids with very large Prandtl numbers (larger
than 103 for magmas and at least 1023 for the Earth’s mantle) and are routinely studied
in the limit of infinite Prandtl number. In this limit, inertial effects are neglected, but
the validity of this approximation has not been thoroughly tested for laminar thermal
plumes.

Theory for steady laminar plumes is well-established. Scaling arguments indicate
that the vertical velocity is constant (Batchelor 1954). Numerical results are available
up to a Prandtl number of 10 (e.g. Fujii 1963; Brand & Lahey 1967; Worster 1986)
and an asymptotic analysis for large Prandtl numbers may be found in Worster (1986).
These analyses are valid for the plume stem far from the leading edge (the cap) and
do not specify the cap behaviour. How the ascent velocity of a plume cap compares
with that of the steady stem below is not known. As regards starting plumes, existing
laboratory studies (Shlien 1976; Moses, Zocchi & Libchaber 1993) do not allow
an assessment of the Prandtl number dependence. Coulliette & Loper (1995) found
differences between their numerical calculations for very large, but finite, Prandtl
number and those of Olson, Schubert & Anderson (1993) at infinite Prandtl number.
One consequence is that it may not be possible to make quantitative comparisons
between numerical models for infinite Prandtl number and laboratory experiments.

Our initial motivation for the present work was to study various aspects of mantle
plume dynamics in the laboratory. In a viscous oil with a Prandtl number of 103, we
found that starting plumes were much faster than allowed by the scaling law of Moses
et al. (1993). This raised the question of how to extrapolate experimental results to
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geological systems. The type of problem facing geologists is perhaps best explained
by the following brief account, which also explains why starting plumes are of special
interest. Flood basalts, rare and extremely voluminous volcanic outpourings which
punctuate the geological record at intervals of several tens of million years, have been
attributed to decompression melting in large mantle plume caps (Campbell & Griffiths
1990). According to the most popular theory, they are generated by instabilities of a
thermal boundary layer at the core–mantle boundary (Stacey & Loper 1983). Others
have argued that they come from a shallower interface within a stratified mantle.
Given the large uncertainties on mantle properties and on the thermal power (or
buoyancy flux) of mantle plumes, discriminating between these competing models
requires robust scaling laws. For example, Courtillot & Besse (1987) have suggested
a link between plume initiation at the core–mantle boundary and changes in the
frequency of geomagnetic field reversals, implying that the time lag between such
magnetic events and the onset of volcanic activity should be close to the rise time
of a plume through the Earth’s mantle. Proving this right or wrong depends on the
sensitivity of the velocity estimate to the thermal power carried by the plume and to
mantle properties such as viscosity and expansion coefficient. Other important goals
are to account for the volume and peculiar isotopic composition of flood basalts,
which depend on the dynamics of mantle plume caps (Farnetani, Legras, & Tackley
2002).

In this paper, we study starting plumes rising through viscous oils in the laboratory,
up to a maximum Prandtl number of 104. The experimental results are compared to
theoretical and numerical analyses for steady plumes. Special attention is paid to the
initial stages of ascent at small distances from the source.

2. Steady plume versus starting plume
The basic scaling relationship for the vertical velocity W in a steady plume was

first established by Batchelor (1954) as

W ∝
(

gαQ

ρνCp

)1/2

, (2.1)

where the variables are defined in table 1. Using an asymptotic theory for σ � 1 in
an unbounded isoviscous fluid, Worster (1986) found that the centreline velocity is

Wo =

(
ln ε−2

2π

)1/2 (
gαQ

ρνCp

)1/2

, (2.2)

where ε is the solution of

ε4 ln ε−2 = σ −1. (2.3)

Moses et al. (1993) determined experimentally the ascent velocities of starting
plumes in several fluids with different Prandtl numbers. They found that all their
measurements are consistent with the following scaling relationship

Wc = (0.23 ± 0.05)

(
gαQ

ρνCp

)1/2

. (2.4)

In fact, their data suggest that the proportionality constant in this relationship
depends on the Prandtl number, but they did not pursue the matter further.

Comparing (2.2) and (2.4) raises the obvious question of the relation between
the velocities of starting and steady plumes. Theory has been developed using a
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Symbol Variable Dimensions

α Expansion coefficient K−1

ρ Density at 20◦C kgm−3

µ Viscosity Pa s
ν = µ/ρ Kinematic viscosity m2 s−1

κ Thermal diffusivity m2 s−1

Cp Specific heat JK−1 kg−1

σ = ν/κ Prandtl number
g Acceleration due to gravity m s−2

Q Power input J s−1

R Cap radius m
a Stem radius m
W Ascent velocity m s−1

L Plume length m
Rh Size of the source m
δν Viscous boundary-layer thickness
δκ Thermal boundary-layer thickness

Table 1. Notation.

boundary-layer approximation valid for plumes of large vertical extent. This requires
that the viscous boundary layer δν around the plume stem scales as

√
νz/W , where z

is height, and that the height of the stem, L, is much larger than δν:

L � ν

(
ρνCp

gαQ

)1/2

. (2.5)

For a starting plume, we must make sure that the influence of the cap on the flow is
negligible. Resistance to motion comes from viscous stresses acting on the cap and
on the stem of the starting plume (figure 1). The plume cap can be described as a
‘Rankine vortex’ (Moses et al. 1993) of radius R, and the force acting on it scales
with R2µW/R. If the stem is approximated by a cylinder of radius a and length L,
the force acting on it scales with LaµW/δν . Assuming R ∼ a, the ratio of viscous
dissipation due to the cap and the stem is

Φcap

Φstem

∼ δν

L
. (2.6)

The condition that Φcap/Φstem � 1 is equivalent to the previous one (2.5). These
arguments show that starting plumes must be studied at sufficiently large distances
from their sources.

3. Laboratory experiments
3.1. Experimental methods

A 453 cm3 glass tank was filled with a Newtonian fluid and a 5mm diameter electrical
coil was placed on a small plastic stand at the base. Working fluids were water and
silicone oils of various viscosities. For these fluids, viscosity is very weakly sensitive to
temperature, which is appropriate for the isoviscous scalings derived above. Physical
properties for the fluids are given in table 2. All properties save specific heat were
determined in our laboratory. For water, the variation of density with temperature
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Fluid ρ (kgm−3) µ (Pa s) α (K−1) Cp (JK−1 kg−1) κ (m s−2)

Water 998 1.0 × 10−3 2.2 × 10−4 4180 1.4 × 10−7

47V2 972 1.9 × 10−3 1.1 × 10−3 1970 6.2 × 10−8

47V8 972 8.2 × 10−3 1.1 × 10−3 1900 7.1 × 10−8

47V30 971 2.8 × 10−2 1.1 × 10−3 1630 9.7 × 10−8

47V100 973 1.1 × 10−1 1.0 × 10−3 1630 1.0 × 10−7

47V500 973 5.4 × 10−1 1.0 × 10−3 1460 1.1 × 10−7

47V103 974 1.1 9.5 × 10−4 1460 1.1 × 10−7

Table 2. Physical properties of the experimental fluids. 47V# are the trade names of the
different RhodorsilTM silicone oils.

R

L

a

Figure 1. Photograph of a starting laminar thermal plume (σ =5 × 103, Q = 2.2 W) using
differential interferometry. Extinction lines follow constant horizontal temperature gradients.
Vertical extinction lines away from the plume correspond to light beams through uniform
background.

is nonlinear and we took the value of the expansion coefficient at room
temperature (20◦C). With increasing power input, plume temperatures increase,
implying a viscosity contrast with respect to fluid in the far field. To minimize
such viscosity variations, we used small values of power input, in a range of 0.01–5 W,
which are close to those of Moses et al. (1993). Viscosity differences away from the
heater, where we test the scaling laws, never reached a factor of 2. We took care to



Laminar starting plumes 291

0 10 20 30 40 50 60
4

5

6

7

8

9

Time (s)

Error barV
el

oc
it

y 
× 

10
3  

(m
 s

–1
)

Figure 2. Ascent velocity as a function of height for σ = 300 and Q = 1.25 W. This velocity is
constant, as predicted by scaling arguments, except at the beginning and end of an experiment.
The measurement error is about ± 3%.

study how plume velocity depends on power input and to verify that the data agree
with the isoviscous scaling law.

3.2. Velocity measurements

To visualize the temperature field, we used differential interferometry (Hauf & Grigull
1970, p. 193) which leads to a very precise image of temperature gradients (figure 1).
We measured the times at which the plume head reaches specific heights in the
tank. These heights were 0.5 cm apart and marked on vertical scales pasted on two
opposite tank walls. The greatest difficulty was to avoid parallax effects. To achieve
maximum accuracy, we placed the tank on a moving table whose vertical position
was continuously adjusted during an experiment. In this way, the optical and viewing
systems were the same at all plume heights. We made sure that the movement of the
tank was sufficiently slow to avoid inertial effects.

For each experiment, the raw data are the arrival times of the plume cap at each
height. These appear to increase linearly; however, a single linear regression through
the whole data set may lead to an inaccurate result. Once the heater is switched on,
there is no motion for some time, and hence there is an initial transient with gradually
increasing velocity. A similar problem is encountered at large times when the plume
slows down as it approaches the top of the fluid. A regression through all data points
would include both effects, and hence would lead to an average velocity value smaller
than the peak value. To avoid this, we measured local velocity values using a linear
regression through the arrival times at five successive heights (figure 2).

For comparisons with theory for an infinite volume of fluid, three experimental
artefacts must be overcome: sidewall effects, free-surface effects and thermal power
leakage. All these effects act to lower the plume velocity. Additionally, the finite size of
the plume source affects the development of the thermal and viscous boundary layers
at small heights (Moses et al. 1993). Thus, the plume must be sufficiently far from the
source to be in the boundary-layer regime and to be unaffected by the source size. In
practice, for σ � 5 × 103, the former condition, (2.5), is fulfilled at small heights (less
than a few centimetres), whereas the latter requires larger distances. For σ = 104, the
latter condition is achieved first. The source effect will be studied in detail below.
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3.3. Wall effects and free-surface effects

In each experiment, the ascent velocity decreases at the end. Depending on the
experimental conditions, this decrease may be due to wall effects, free-surface effects
or a combination of both. For the sake of accuracy, we did not try to correct for
wall and free-surface effects using equations derived for simple shapes. For each
fluid, wall effects were detected by performing a reference experiment twice at the
largest power input (corresponding to the largest plume): first in the 453 cm3 tank,
and then in a smaller one (303 cm3). For Prandtl numbers up to 5 × 103, the plateau
velocity was found to be the same in the two experiments. For σ = 104, there was
a slight difference between the two, but it was within the error range and hence we
kept the results obtained in the large tank.

To avoid wall effects, the viscous boundary layer δν must not extend to the tank
walls. For tank half width Rtank , this states that:

L <
R2

tank

ν

(
gαQ

ρνCp

)1/2

. (3.1)

This condition can be combined with the previous condition, (2.5), to obtain the
maximum Prandtl number for which the boundary-layer solution can be observed,

σmax ≈
(

R2
tankgαQ

ρCpκ3

)1/3

. (3.2)

For our experimental conditions, the maximum Prandtl number is σmax = 104, which
is consistent with the observations.

3.4. The energy flux into the plume

Heat was generated by ohmic dissipation in a small coil (5 mm diameter, resistance of
13 Ω). We repeated a few experiments with a larger coil dimension (10 mm diameter,
18 Ω) and found no detectable effect on the value of the peak velocity. One problem is
that the total power dissipated in the electric coil may not be carried into the plume.
We observed a small region of heated fluid below the coil. In steady-state conditions,
therefore, some power was diverted towards the small stand at the base to maintain
such a heated region. The plume energy flux must therefore be smaller than the total
power dissipated in the coil. The latter is measured exactly, but the former is difficult
to determine a priori. We took this into account when treating the data, as explained
below. Failure to account for this inevitable effect leads to an overestimate of the
true energy flux of the plume, and hence, once again, to an underestimate of the
proportionality constant in the velocity scaling law.

4. Experimental results
4.1. Ascent in the experimental tank

By definition, we measure the velocity with which the thermal plume propagates,
that is, we measure the advection velocity of the temperature field. It appears that
velocity is effectively constant during a large part of the experiment, as predicted
by scaling arguments. Four different ascent stages may be defined. The first stage is
the conductive growth of a thermal boundary layer around the heater. Bulk motion
begins after a finite time which is a decreasing function of the power input and an
increasing function of fluid viscosity, as already described by Moses et al. (1993). In
the second stage, the cap velocity rapidly increases until it reaches a constant value.
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Figure 3. The plume rise velocity as a function of power input for σ =104. Points are shown
with the 3% experimental error. The solid line corresponds to the linear regression.

In the third stage, velocity remains constant. We shall refer to this as the ‘plateau’
stage (illustrated figure 1). Later in the experiment, velocity begins to decrease owing
to the free-surface effect. In the ‘plateau’ stage, the cap radius gradually increases
following the behaviour already described by Moses et al. (1993).

4.2. The ‘plateau’ stage

In each experiment, this regime is such that velocity is constant within the experimental
error, which is about 3% (mainly visual inaccuracy). The scaling developed for steady
plumes predicts that, for a given fluid, velocity increases as

√
Q. This behaviour is

shown for oil 47V103 (σ = 104) for which we used the largest range of power inputs
(figure 3). Values for W 2

c and Q lie along a straight line, but the best-fit line does not
go through the origin. We interpret this as being due to the downward transport of
energy towards the base of the tank, as discussed above. This implies that the power
carried by the plume is smaller than the total dissipation in the electric coil. The data
are consistent with a relationship of the form:

Wc = β(Q − Qo)
1/2 , (4.1)

where Qo is the power ‘leakage’. This suggests that this leakage is independent of the
total power dissipated. Power leakage increases as the fluid viscosity increases, which
may be explained as follows. In the initial stage before flow starts, heating propagates
radially away from the coil. The ‘lift-off’ time increases with increasing fluid viscosity
(Moses et al. 1993) and hence the size of the heated region below the electric coil
increases with increasing fluid viscosity.

For each fluid, we have measured a constant ascent velocity, and we have written
it as follows:

Wc = λ(σ )

(
gα[Q − Qo]

ρνCp

)1/2

. (4.2)

Parameters λ and (Q − Qo) in equation (4.1) are the relevant experimental results
for comparison with theory (table 3). For fluids with viscosities smaller than 2.8 ×
10−2 Pa s (σ � 3.0 × 102), power leakage is negligible and the data do demonstrate
that velocity is proportional to the square root of power input. At larger viscosity,
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Experimental fluid Prandtl number, σ Dimensionless velocity, λ Power leakage, Qo (W)

Water 7.16 0.22 ± 0.02 2.4 × 10−6

47V2 31.5 0.31 ± 0.02 1.1 × 10−5

47V8 119 0.41 ± 0.02 2.2 × 10−3

47V30 297 0.44 ± 0.02 8.7 × 10−3

47V100 1.13 × 103 0.46 ± 0.02 1.0 × 10−2

47V500 5.05 × 103 0.51 ± 0.02 4.0 × 10−2

47V103 1.03 × 104 0.53 ± 0.02 6.0 × 10−2

Table 3. Experimental results for starting plumes.

the data at small values of the power input must be corrected for power leakage and
the demonstration may seem less convincing. However, at large values of the power
input (� 1 W), power leakage is a small fraction of the total, and velocity is nearly
proportional to Q1/2. We thus conclude that the scaling law is consistent with the
experimental data.

For water, our experimental determination for λ is 0.22 ± 0.02, which is nearly
identical to the value reported by Moses et al. (1993). For larger values of the Prandtl
number, however, our results are systematically larger than theirs.

4.3. Dependence on Prandtl number

According to our experiments, the starting plume velocity increases as a function of
the Prandtl number (table 3) and hence it is logical to test whether it is proportional
to the stem velocity. For comparison with our measurements, we have obtained new
solutions to the steady plume governing equations numerically. We used the same
boundary-layer approximation and the same equations as Fujii (1963) and Worster
(1986). However, we are dealing with large Prandtl numbers, and hence we have
rescaled variables using the thickness of the thermal boundary layer, δκ , instead of
the viscous boundary layer. With our scheme, we reproduce the results quoted by
Worster (1986) for σ = 10. The ascent of the cap, as measured in our experiments,
represents the advection of the thermal anomaly of the plume. An average velocity
of heated fluid may be defined as follows

w̄ =

∫ ∞

0

w(r)θ(r)r dr

∫ ∞

0

θ(r)r dr

, (4.3)

where θ is the temperature anomaly in the plume and w the vertical velocity (for the
plumes of this study, both variables are positive).

In figure 4, we compare our numerical results for the centreline velocity to the
asymptotic predictions of Worster (1986). The difference between the two decreases
with increasing Prandtl number and is less than 6% for σ � 102. The ‘bulk’
velocity also tends to the centreline value. This is explained by the fact that, with
increasing Prandtl number, the viscous boundary layer becomes increasingly larger
than the thermal boundary layer. Thus, for sufficiently large σ , we have w ≈ Wo

for 0 < r < δκ . In this limit,
∫ ∞

0
wθr dr ≈ Wo

∫ ∞
0

θr dr , and hence w̄ ≈ Wo. To
summarize, at large Prandtl number, the two velocities – bulk and centreline – tend
to the same value, and to the asymptotic result of Worster (1986). Surprisingly, the
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bulk (black solid line) velocities of a steady plume and the asymptotic prediction of Worster
(1986) (dashed line). Velocity values are scaled with
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Figure 5. Dimensionless vertical velocity as a function of Prandtl number. �, Present
experimental results for starting plumes scaled by a factor of 1/0.57. The solid line shows the
asymptotic prediction of Worster (1986) for steady plume stems.

asymptotic result provides a very good approximation for the ‘bulk’ velocity value for
all Prandtl numbers larger than about 7 (the asymptotic equation has no solution for
σ < 5.47).

We found that, within experimental error, our experimental determinations of the
cap velocity are proportional to the ‘bulk’ velocity values for all Prandtl numbers
studied. As a consequence, they are also proportional to the asymptotic predictions.
This is shown in figure 5, where we plot both the asymptotic results and our
experimental values scaled by the best-fitting factor of 1/0.57. For Prandtl numbers
larger than about 102, the three theoretical velocity values – bulk, centreline and
asymptotic – are almost indistinguishable, and hence the experimental data are
proportional to all of them within experimental error.
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Figure 6. Starting time τ for the plateau regime as a function of the square root of the
power input for �, σ = 103 and ©, σ = 5 × 103. The linear fit is consistent with simple scaling
arguments given in the text.

From these results, the ascent velocity of a laminar starting plume can be writ-
ten as

Wc = (0.57 ± 0.02)

(
ln ε−2

2π

)1/2 (
αgQ

ρνCp

)1/2

, (4.4)

where ε is a root of ε4 ln ε−2 = σ −1 and where σ is larger than 7. The starting plume
velocity is therefore smaller than velocities in the stem, which implies that the cap is
growing with time owing to the input of heated fluid from below.

4.4. Source effect

We have studied the transition between the acceleration regime and the plateau regime
for intermediate values of the Prandtl number, σ = 103 and σ = 5 × 103. At smaller
Prandtl numbers, the acceleration stage is too short to be studied with accuracy. The
condition for the plume to reach the plateau regime can be expressed as a function
of the size of the heater Rh,

L � Rh. (4.5)

Using L ∼ Wt , this condition can be rewritten as a limit time,

t > ARh

(
ρνCp

gαQ

)1/2

, (4.6)

where A is a constant. To test this relationship, we determine time τ at which the
ascent velocity reaches 97% of the plateau velocity. Figure 6 shows τ as a function of√

Q − Qo for σ = 103 and σ = 5 × 103. The data are consistent with equation (4.6) with
A = 18 ± 1. This time corresponds to a height above source which is about five times
the heater size. We may use τ as a time scale to obtain a dimensionless relationship
W/Wc = f (t/τ ). Using these scales, data for 10 experiments in two different oils
spanning a large range of power inputs collapse onto a single curve (figure 7).
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Figure 7. Dimensionless ascent velocity as a function of dimensionless time for σ = 103 and
σ = 5 × 103. The final velocity decrease due to free-surface effects has been omitted. The plume
is in the boundary-layer regime for t > τ .

5. Conclusion
Experimental studies in viscous fluids with large Prandtl numbers illustrate that

a laminar thermal plume rises in different regimes depending on the height above
source. At small height above source, the plume accelerates progressively. At large
distance from the source, or equivalently at large times after lift-off, its velocity is
constant and proportional to the steady-plume velocity. The starting plume cap grows
by continuous addition of fluid from the stem.

The Prandtl-number dependence of the ascent velocity is weak. Geological flows,
however, involve fluids with a very large range of physical properties. Applying the
scaling law of Moses et al. (1993) to mantle plumes (σ ≈ 1023), for example, would
lead to a velocity value which would be too small by a factor of 5.7.

The authors thank two anonymous reviewers and Grae Worster for their construct-
ive remarks.
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